

01 – 05 February 2021 · virtual conference
The European Event for Electronic
System Design & Test

Fuzzy-Token: An Adaptive MAC Protocol for Wireless-Enabled Manycores

Antonio Franques¹ (franque2@illinois.edu),

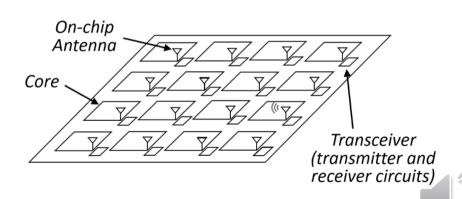
Sergi Abadal², Haitham Hassanieh¹, Josep Torrellas¹

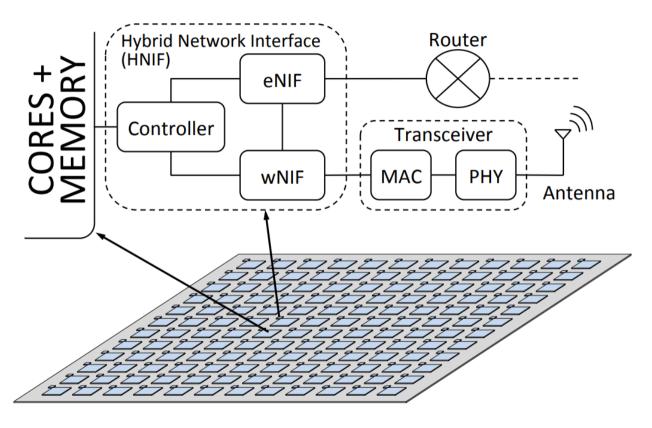
¹University of Illinois at Urbana-Champaign

² Universitat Politècnica de Catalunya

CCF-1629431

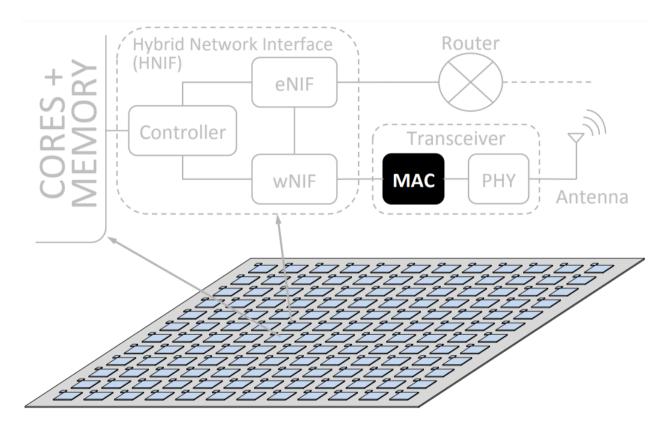
863337 (WiPLASH)





Context

- Current trends are leading to larger manycores
- Wireless on-chip communication holds promise for the implementation of fast networks for these multiprocessors
- In complement of a wired NoC, wireless provides
 - Low latency
 - Natural broadcast capabilities
 - Flexibility



Wired+Wireless Network-on-Chip

Wired+Wireless Network-on-Chip

Motivation

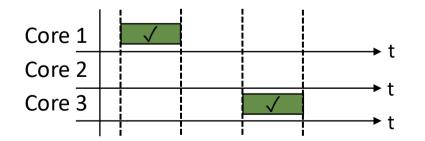
- As the core density increases, more wireless interfaces can be expected on chip
- Need for arbitration strategies (MAC protocols)
 - That provide low access latency
 - That scale with number of wireless nodes
 - That adapt to different traffic patterns
 - That are simple to implement

Medium Access Control (MAC)

- The MAC layer defines mechanisms to ensure that all nodes can access the shared wireless medium in an organized manner
- Two common access methods: token passing, random access

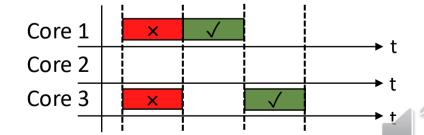
Medium Access Control (MAC)

- TI ✓ No wasted cycles at high loads
 - × Unnecessary delays if contention is low
- nism diun
- ✓ No wasted cycles if contention is low (transmit right away)
- × Lots of collisions at high loads


• Two co...

moas: token pa

Jess


Token passing

Pass a token around a virtual ring. Only the token holder can transmit

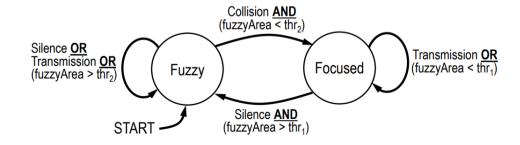
Random access

Simultaneous accesses to the same channel collide and need to retry

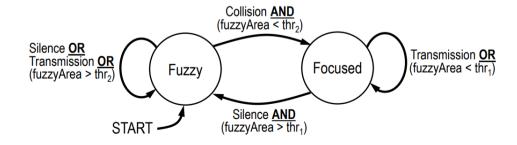
MAC Context Analysis

- Wireless on-chip scenario
 - Physically constrained need for lightweight MAC protocol
 - Unlike off-chip scenarios, the environment is static and known beforehand
 - All nodes are synchronized
 - Collisions can always be detected
 - Protocols must scale to many cores and adapt to changes in traffic

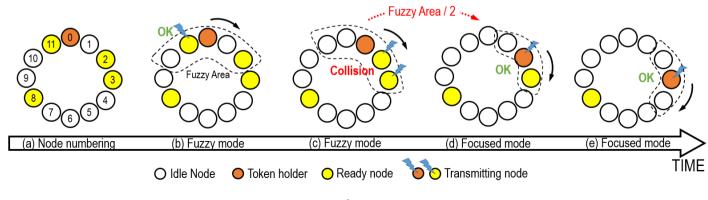
	Low load	High load	Variability
Random access	✓	×	×
Token passing	×	✓	×
???	✓	✓	✓


Contribution: Fuzzy-Token

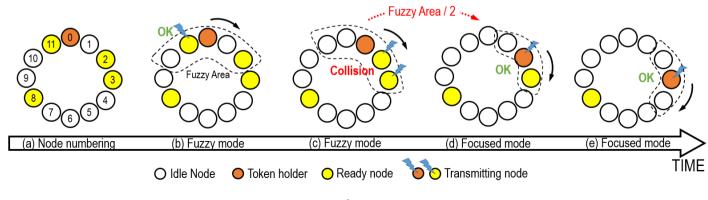
- We propose *Fuzzy-Token*, a hybrid protocol based on two basic approaches: token passing, and random access
- We evaluate the performance of Fuzzy-Token with a synthetic traffic suite and real application traces
- We compare the obtained performance with that of a tokenpassing and a random-access protocol for wireless NoCs, called BRS (Mestres et al, 2016)


Fuzzy-Token: Main Idea (1/2)

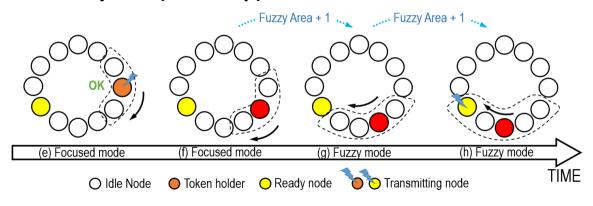
- 2 operation modes
 - Focused → only the token holder can transmit (collision-free guarantee)
 - Fuzzy \rightarrow all nodes inside Fuzzy Area (except token holder) that have pending packets can transmit with probability p_i
- Mode can change at each step
 - If in focused and token holder doesn't transmit → switch to fuzzy
 - If in fuzzy and collision → switch to focused


Fuzzy-Token: Main Idea (2/2)

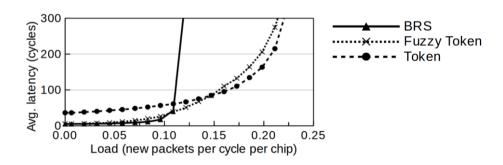
- Fuzzy Area size controls amount of contention at each step
 - Increase size (after idle step) when the load is low to give rapid access to the few nodes that want to transmit
 - Quickly decrease size (after collision) when load increases to minimize further collisions


Fuzzy-Token: Example (1/2)

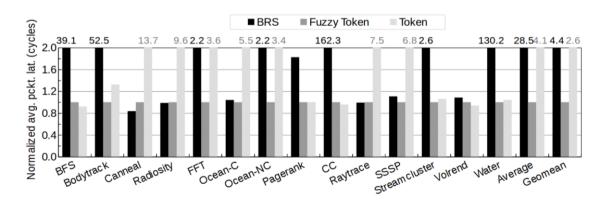
- Initial state
 - Fuzzy Mode (all nodes inside Fuzzy Area except token holder may transmit)
 - Token holder: node 0, Fuzzy Area size: 5
- Fuzzy Area size updated using additive increase multiplicative decrease
 - Increase area size by 1 after each idle step
 - Decrease area size by half (round up) after a collision


Fuzzy-Token: Example (1/2)

- Initial state
 - Fuzzy Mode (all nodes inside Fuzzy Area except token holder may transmit)
 - Token holder: node 0, Fuzzy Area size: 5
- Fuzzy Area size updated using additive increase multiplicative decrease
 - Increase area size by 1 after each idle step
 - Decrease area size by half (round up) after a collision


Fuzzy-Token: Example (2/2)

- Initial state
 - Fuzzy Mode (all nodes inside Fuzzy Area except token holder may transmit)
 - Token holder: node 0, Fuzzy Area size: 5
- Fuzzy Area size updated using additive increase multiplicative decrease
 - Increase area size by 1 after each idle step
 - Decrease area size by half (round up) after a collision


Fuzzy-Token: Evaluation (1/2)

- Synthetic traffic latency
 - √ As good as BRS at low loads (fully open Fuzzy Area, transmit immediately)
 - ✓ Almost as good as Token at high loads (very small *Fuzzy Area*, mostly Token Holder is the only one that can transmit)
 - ✓ Dynamic and fast adaptation from one behavior to another as load changes

Fuzzy-Token: Evaluation (2/2)

- Real applications
 - We obtain latency statistics from Multi2Sim on a 64-core chip
 - Benchmarks from PARSEC and CRONO suites
 - ✓ Fuzzy-Token provides latency among the lowest of 3 protocols
 - √4.4x lower latency than BRS, and 2.6x lower than Token

Fuzzy-Token: Also in the Paper...

- Design decisions
- Related work
- Further analysis on...
 - Tail latency
 - Hotspot traffic
 - Bursty traffic
 - Throughput
 - Energy consumption

Fuzzy-Token: Conclusions

Thank you!

- Hybrid approach combines pros of both token-passing and random-access protocols
 - ✓ Low latency at low loads (random-access mode)
 - √ Low latency and collision-free at high loads (token-passing mode)
- Run both random-access and token-passing methods simultaneously
 - ✓ Token is always passed to ensure fairness among nodes
 - ✓ Protocol reacts immediately after traffic changes (mode change + *Fuzzy Area* update)
- All transceivers see same consistent view of wireless channel
 - √ All nodes are synchronized and proceed in lockstep (no need for explicit messages)
- Evaluation with a synthetic traffic model and real application traces shows *Fuzzy-Token* achieves lowest latency than baseline protocols in many different scenarios
 - ✓ Low/High loads
 - √ Hotspot/Bursty traffic

