

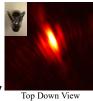


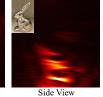
# GeRaF: Neural <u>Ge</u>ometry Reconstruction from <u>Radio Frequency Signals</u>

Jiachen Lu\*, Hailan Shanbhag\*, Haitham Hassanieh

École Polytechnique Fédérale de Lausanne (\* indicates co-authors, equal contribution)

#### Radio frequency offers advantages to vision in many scenarios


### Radio frequency...


- · Can see through occlusions
- · Works regardless of visibility
- Safe for humans!

#### However...

- Low spatial resolution
- Huge computational complexity

#### Radio Frequency (RF) heatmaps are not informative enough

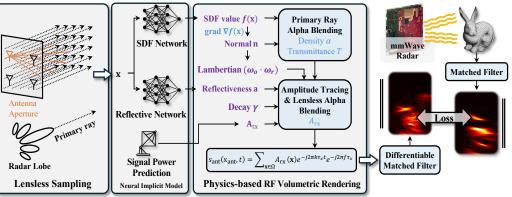






Object inside

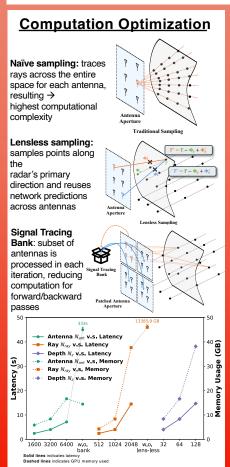
1 Scan

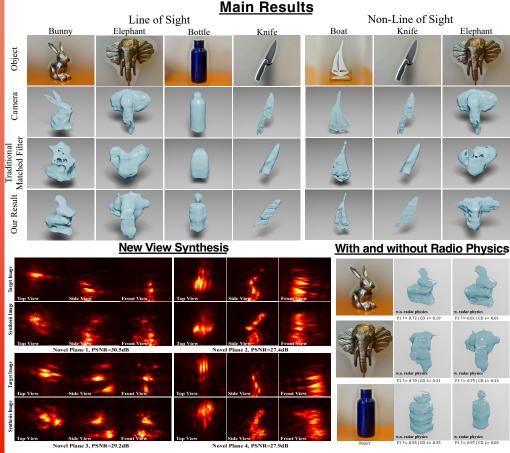

Radar

Multiview
Scanning
Planes

Radar

Our System: Multiplane radar image scans to enable 3D reconstruction


#### **GeRaF Overview**




## **Challenges in RF Implicit Models**

- 1) Use *lensless imaging* models instead of the pinhole model
- Dominated by specular reflections instead of diffused reflections
- 3) RF rendering has huge computational complexity

<u>GeRaF</u> is composed of: (1) **Lensless sampling** to replace ray-based sampling methods commonly used in vision. (2) A **neural implicit** model predicts geometry, reflectivity, and power. (3) **RF volumetric rendering** simulates physical signal propagation. (4) **Matched filtering** produces radio frequency power images (heatmaps). (5) An **L2 loss** compares the rendered and ground truth power for end-to-end training.



