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Radio frequency offers advantages to vision in many scenarios
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GeRaF Overview

Radio Frequency (RF) heatmaps are not informative enoughRadio frequency…
• Can see through occlusions
• Works regardless of visibility
• Safe for humans!
However…
• Low spatial resolution
• Huge computational complexity

Novel Plane 1, PSNR=30.5dB
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Novel Plane 2, PSNR=27.4dB

Novel Plane 3, PSNR=29.2dB
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Novel Plane 4, PSNR=27.9dB
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New View Synthesis With and without Radio Physics

Main Results
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Computation Optimization

Naïve sampling: traces 
rays across the entire 
space for each antenna, 
resulting à
highest computational 
complexity

Lensless sampling: 
samples points along 
the
radar’s primary 
direction and reuses 
network predictions 
across antennas

Signal Tracing 
Bank: subset of
antennas is 
processed in each 
iteration, reducing 
computation for 
forward/backward 
passes

GeRaF is composed of: (1) Lensless sampling to replace ray-based sampling methods commonly used in vision. (2) A neural implicit 
model predicts geometry, reflectivity, and power. (3) RF volumetric rendering simulates physical signal propagation. (4) Matched filtering 
produces radio frequency power images (heatmaps). (5) An L2 loss compares the rendered and ground truth power for end-to-end training.

Solid lines indicates latency
Dashed lines indicates GPU memory used

F1 ↑= 0.81	|	CD ↓= 0.01 F1 ↑= 0.72	|	CD ↓= 0.19 

w.o. radar physics w. radar physics

F1 ↑= 0.70	|	CD ↓= 0.21 F1 ↑= 0.79	|	CD ↓= 0.14 

w.o. radar physics w. radar physics

F1 ↑= 0.55	|	CD ↓= 0.35 F1 ↑= 0.97	|	CD ↓= 0.05 
w.o. radar physics w. radar physics
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Neural Implicit Model

Challenges in RF Implicit Models

1) Use lensless imaging models 
instead of the pinhole model

2) Dominated by specular 
reflections instead of diffused 
reflections

3) RF rendering has huge 
computational complexity

Our System: Multiplane radar image 
scans to enable 3D reconstruction
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