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Radio frequency offers advantages to vision in many scenarios r‘ Object inside

%o

e

Radio frequency. . Radio Frequency (RF) heatmaps are not informative enough
 Can see through occlusions
» Works regardless of visibility
+ Safe for humans!
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Challenges in RF Implicit Models
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3) RF rendering has huge
computational complexity

Lensless Sampling )

GeRaF is composed of: (1) Lensless sampling to replace ray-based sampling methods commonly used in vision. (2) A neural implicit
model predicts geometry, reflectivity, and power. (3) RF volumetric rendering simulates physical signal propagation. (4) Matched filtering
produces radio frequency power images (heatmaps). (5) An L2 loss compares the rendered and ground truth power for end-to-end training.
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Signal Tracing
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