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ABSTRACT

This paper presents D-BigBand, a system that senses a GHz-wide
spectrum in real time using ADCs sampling at only tens of MS/s
speed. It is an advanced version of our previous work, BigBand,
which senses GHz-wide sparse spectrum using commodity radios.
However, unlike BigBand that requires the spectrum to be sparse,
D-BigBand does not assume sparsity utilization of the spectrum.
This is particularly important for the spectrum under 2GHz which
is typically not sparse, crowded with different wireless technologies
like TV broadcasting, mobile, AM radios, etc. The key idea of D-
BigBand is to run sparse recovery on the changes of the spectrum:
since only a small fraction of the spectrum is likely to change its
occupancy over short intervals of a few milliseconds, the changes
of the spectrum is sparse and we can apply sparse recovery to it.
Our evaluation shows that D-BigBand works even if 95% of the
spectrum is occupied.

Keywords Spectrum Sensing; Sparse Fourier Transform; Wire-
less; ADC; Software Radios

1. INTRODUCTION

Spectrum sensing has been a recurring topic in the past two
decades, not only in the research community [1], but also in the
government [4] and the industry [9]. Specifically, the recent con-
cerns of spectrum crisis [3] and the plan to open up GHz-wide of
spectrum by the FCC [11] has driven the community to look at
real-time wideband spectrum sensing at the bandwidth of multi-
GHz [7].
Realtime GHz signal sensing, however, is challenging. GHz-

wide bandwidth requires high-speed analog-to-digital converters
(ADCs), which are costly and power hungry, and have a low bit res-
olution [10]. Instead, typical spectrum sensing platforms like Mi-
crosoft Observatory [9] sequentially scan the spectrum; they hop
from one band to the next, sensing only tens of MHz at any point in
time. As a result, each band is monitored only occasionally, making
it easy to miss short lived signals (e.g., radar).
Our previous work, BigBand [7], solves this problem by assum-

ing and leveraging the sparsity in the spectrum. BigBand captures
GHz of spectrum in real time but uses only a few ADCs that each
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samples the signal at tens of MS/s. To achieve this goal, it builds
on advances in the area of sparse Fourier transform [6, 5], which
permit signals whose frequency domain representation is sparse to
be recovered using only a small subset of their samples — i.e.,
BigBand can recover GHz of spectrum without sampling it at the
Nyquist rate.
In this paper, we extend BigBand to D-BigBand, which senses

non-sparse spectrums when the spectrum utilization is dense. Ac-
cording to multiple spectrum reports [8], the spectrum under 2GHz,
is especially crowded with various wireless services like TV sta-
tions, LTEs, AM radios, etc. Sensing and monitoring the spectrum
utilization for these bands is equally important as for sensing spec-
trum at higher frequencies which tends to be sparse, but sparsity-
based techniques such as BigBand is likely to fail at spectrum under
2GHz because of lack of sparsity. For example, The ADC speed re-
quired by BigBand is proportional to the spectrum sparsity, which
means under 2GHz, it falls back to use GHz ADCs in order to sense
these nonsparse spectrum.
The key idea behind our system, D-BigBand, is that even if the

spectrum itself is densely occupied, only a small fraction of the
spectrum is likely to change its occupancy over short intervals of
time (e.g., a few milliseconds). In other words, the difference of
spectrum occupancy within a small time window is still sparse, and
we can use sparse Fourier transform, the same technique that Big-
Band is based on, to track the sparse changes in the spectrum. 1 D-
BigBand builds on this basic idea to sense densely occupied spec-
trum using sub-Nyquist sampling. We also evaluate our design em-
pirically showing that it can detect frequency bands that change
occupancy even when the spectrum is 95% occupied.

2. PRIMER ON BIGBAND

Since D-BigBand leverages sparse Fourier transform, which is
the same sparsity recovery principle as in BigBand, we provide a
brief primer on how BigBand recovers sparse spectrum. For more
details, we encourage the readers to refer to BigBand [7]. At a high
level, the sparse recovery consists of two steps:

• Bucketization: BigBand bucketizes the wide frequency spectrum
into different buckets, so each of the bucket contains only one or
a very small number of non-zero frequencies. The way of buck-
etization in BigBand is using low-speed ADCs: 1) Each ADC
samples at sub-Nyquist rate, which creates aliasing in the fre-
quency domain; 2) aliasing adds up frequencies which effectively
creates buckets: 3) the frequencies that are aliased together hash
into the same bucket.

• Recovery: BigBand recovers the frequency positions and their
values by bucketizing the same spectrum multiple times so that

1The above gives the intuition. However, technically, we compute
changes in the signal power, not the actual signal.
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Figure 1—Sensing one change in non-sparse spectrum: (a) f=12 is occupied at t = 0. (b) f=12 is empty at t = TW. (c) Bucketize the
spectrum at t = 0 and t = TW using co-prime aliasing filters and subtract the two bucketizations to discover changing buckets. Changes are
sparse. (d) Each co-prime filter votes for the frequencies that hash to a changing bucket. Only f=12 gets two votes.

it randomizes the bucketization process. Now the frequencies
that hash into the same bucket in one bucketization do not col-
lide again in other bucketizations so that we can decouple them.
[7] proves that if the buckets are co-prime (i.e., the subsampling
ratios of the ADCs are co-prime), we can recover the spectrum
accurately by voting techniques.

3. D-BIGBAND

The key idea of D-BigBand is that although the spectrum might
be not sparse, the changes in spectrum usage are sparse: i.e. over
short intervals, only few frequencies are freed up or become occu-
pied. We refer to this as differential sparsity. Differential sparsity
allows D-BigBand to leverage the same sparsity recovery princi-
ple as in BigBand, but operates on the differential sparsity instead
of the sparsity in the spectrum utilization. To see how this allows
D-BigBand to sense a non-sparse spectrum we will start with an
example.

3.1 Illustrative Example

In this example, we are going to assume that the state of any fre-
quency can either be occupied or empty. However, if a frequency
is occupied, its value does not change over time. We will later ex-
plain how to deal with the fact that values of occupied frequencies
change over time. Let us consider the case where one frequency
f = 12 which was occupied becomes unoccupied after time TW as
shown in Fig. 1(a,b). Now if we bucketize the spectrum, all buckets
will be non-empty and will have collisions. Hence, we cannot di-
rectly use the BigBand algorithm. However, since frequency f = 12
became empty after time TW, the power in the bucket it hashes to
will become lower after time TW. Further, since it is the only fre-
quency that changed state, only the power of that bucket changes.
Hence if we subtract the bucketization at time TW from that at time
0, we can find which buckets have frequencies that changed state as
shown in Fig. 1(c).
Subtracting the bucketizations, allowed us to bucketize the

“changes” in the spectrum. However, we still need to estimate
which frequency is the one that changed state out of the frequencies
that hash to the bucket. To do this, we use an estimation procedure
based on voting and co-prime aliasing filters. Both at time 0 and
time TW, we perform two bucketizations; one using an aliasing fil-
ter with four buckets and another using an aliasing filter with seven
buckets as shown in Fig. 1(c). Now every frequency that is hashed

into a bucket that changed gets a vote. However, since the filters are
co-prime, frequencies that hash to the same bucket as f in the first
filter and get a vote, will hash to a different bucket in the second
filter and will not get a second vote. Hence, only frequency f = 12
will get two votes which allows us to estimate its position as shown
in Fig. 1(d).
The above example gives an intuition of how we can leverage the

sparsity of changes in the spectrum to discover which frequencies
become occupied and which become empty. However, to be able to
generalize the above approach, we need to first address the follow-
ing issue: Since the values of the occupied frequencies change after
a time TW, the values of the buckets will change even if the state of
the frequencies that hash to them did not change. Hence, we cannot
simply subtract the two bucketizations. However, since FCC typi-
cally requires wireless transmissions to be whitened over time, the
average power of a bucket will not change if the state of frequencies
that hash to it does not change. To estimate the average power over a
time window TW, D-BigBand performs the bucketization multiple
times and averages the power of the buckets. The longer the time
window TW, the better the estimate of the average power of each
bucket. However, the longer the time window, the more frequencies
change their state. In §4, we show that a time window TW = 1 ms
allows us to properly detect changes in the buckets.

3.2 D-BigBand Algorithm

D-BigBand’s algorithm works as follows. Over a time window
TW, D-BigBand bucketizes the signal multiple times2 for each of
the co-prime aliasing filters and calculates the average power in the
bucket over this time window. It then repeats these bucketizations
over the next time window and subtracts the average power of the
buckets in the first time window from that in the second time win-
dow. After that each filter votes for frequencies that hash to buckets
where the power changed. Frequencies that get full votes are picked
as the frequencies whose state has changed. Hence, based on our
knowledge of the spectrum occupancy during the first time win-
dow, we can discover the spectrum occupancy during the second
time window.
As with any differential system, we need to initialize the state

of spectrum occupancy. However, an interesting property of D-
BigBand is that we can initialize the occupancy of each frequency

2The number of times D-BigBand can average is = TW/T where T
is the FFT window time.
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Figure 2—D-BigBand’s effectiveness as a function of Differen-
tial Sparsity: For less than 2.5% changes in the spectrum of 1GHz,
D-BigBand works reliably well.

in the spectrum to unknown. This is because, when we take the
difference in power we can tell whether the frequency became oc-
cupied or it became empty. Hence, once the occupancy of a fre-
quency changes, we can tell its current state irrespective of its pre-
vious state. This avoids the need for initialization and prevents error
propagation.

4. IMPLEMENTATION AND EVALUATION

4.1 Implementing D-BigBand

As a proof of concept, we implement D-BigBand using USRP
N210 software radios [2]. Since the USRPs use the same ADCs, it
is not possible to have co-prime sub-sampling rates. 3 Therefore,
to verify that D-BigBand can sense a non-sparse spectrum, we use
multiple USRPs sampling adjacent narrowband chunks to capture
a full 1 GHz of spectrum. And then, we emulate lower-speed co-
prime ADCs by subsampling the 1GHz signal.
However, since our testbed has only 20 USRPs, we divide them

into 10 receivers and 10 transmitters and capture 250MHz at a time.
We repeat this 4 times at center frequencies that are 250 MHz apart
and stitch them together in the frequency domain to capture the
full 1 GHz spectrum. We then perform the inverse FFT to obtain a
time signal sampled at 1 GHz. We now subsample this time domain
signal using co-prime aliasing filters with the following sampling
rates: 1/21, 1/20, 1/23 GHz, and run D-BigBand on these subsam-
pled versions of the signal.

4.2 Evaluation

In this section, we evaluate D-BigBand’s ability to properly sense
a non-sparse spectrum.

Experiment 1: Differential Sparsity Range

We start by evaluating how well D-BigBand can sense the spec-
trum versus how many frequencies in the spectrum are changing
their occupancy. We set the sparsity of the spectrum to 50% oc-
cupancy on average and we vary the percentage frequencies that
change their occupancy over 1 ms between 0.5% up to 6.25% of
the total 1 GHz spectrum.

Results 1:We consider two metics: 1) False Negatives: The fraction
of occupied frequencies that BigBand incorrectly reports as empty.

3The USRP ADC has a sampling rate of 100 MHz, and the USRP
has digital filters but these can only produce sampling rates which
are integer dividers of 100 MS/s (i.e. 100/2, 100/3, 100/4, etc.).
This means, for 1 GHz bandwidth, it is not possible with USRPs to
get even two aliasing filters that sample at 1/p1 and 1/p2 where p1
and p2 are co-prime. Instead, we can of course implement the co-
prime aliasing filters using commodity ADCs. However, this would
require building a new receiver that uses these ADCs.
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Figure 3—D-BigBand’s effectiveness as a function of Spectrum
Sparsity: Over a band of 1 GHz, D-BigBand can reliably detect
changes in spectrum occupancy even when the spectrum is 95%
occupied, as long as the change in spectrum occupancy is less than
1% every ms.

2) False Positives: The fraction of empty frequencies. Fig. 2 shows
the number of false positives and false negatives as a function of the
percentage of frequencies that change occupancy. The figure shows
for less than 2.5% changes in the spectrum (i.e. 25 MHz), false pos-
itives are below 5% and false negatives are below 1% and for less
than 5% changes in the spectrum (i.e. 60 MHz), false negatives are
below 3%. Although, false positives become larger as the percent-
age of frequencies changing their occupancy every 1 ms becomes
larger, the goal in spectrum sharing is typically to find an unoccu-
pied frequency to transmit in so as long as the number of false nega-
tive is small, D-BigBand will always allow devices to correctly find
some unoccupied frequencies.

Experiment 2: Sparsity Range

Now we want to confirm that D-BigBand can properly sense the
spectrum at any sparsity. For this, we fix the number of frequencies
that change occupancy every 1 ms to 1% (i.e. 10 MHz) and vary the
percentage of total occupied frequencies in the spectrum between
1% to 95%.

Results 2: Fig. 3 shows the percentage of of false positives and false
negatives. As the occupancy increases from 1% to 95%, both false
negatives and false positives increase by 1% this is because as the
spectrum becomes more occupied, more frequencies hash to the
same bucket and the variance in estimating the average power per
bucket increases.
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